Plot potential energy surfaces of symmetric triatomics and find the vibrational frequencies
surface_plot(h2o_vals)
r_opt, theta_opt, nu_r, nu_theta = vib_calc(h2o_vals)print('the optimum bond length of water is ', r_opt, ' angstroms with angle ', theta_opt, ' degrees' )print('the stretching frequency ', round(nu_r), ' cm-1 and bending frequency ', round(nu_theta), ' cm-1' )
the optimum bond length of water is 0.95 angstroms with angle 105.0 degrees
the stretching frequency 3113 cm-1 and bending frequency 1665 cm-1
Calculate steady state concentrations
Find the steady state concentration for chemical systems of the form \[D \xrightleftharpoons[k_{u}^{R15}]{k_{f}^{R15}} I \xrightleftharpoons[k_{u}^{R16}]{k_{f}^{R16}} N\]
kf1 =26000kr1 =0.06kf2 =730kr2 =0.00075urea_conc = np.linspace(0, 8, num=1000)ss_conc = np.array([steady_state_calc(kf1*np.exp(-1.68*conc), kr1*np.exp(0.95*conc), kf2*np.exp(-1.72*conc), kr2*np.exp(1.20*conc)) for conc in urea_conc])plt.plot(urea_conc,ss_conc[:, 0],label='D')plt.plot(urea_conc,ss_conc[:, 1],label='I')plt.plot(urea_conc,ss_conc[:, 2],label='N')plt.xlabel('[Urea]/ M')plt.ylabel('Fraction of Species')plt.legend()plt.show()